Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
1.
Oncol Lett ; 21(6): 458, 2021 Jun.
Article in English | MEDLINE | ID: covidwho-1225869

ABSTRACT

Cryoablation is an emerging type of treatment for cancer. The sensitization of tumors using cryosensitizing agents prior to treatment enhances ablation efficiency and may improve clinical outcomes. Water efflux, which is regulated by aquaporin channels, contributes to cancer cell damage achieved through cryoablation. An increase in aquaporin (AQP) 3 is cryoprotective, whereas its inhibition augments cryodamage. The present study aimed to investigate aquaporin (AQP1, AQP3 and AQP5) gene expression and cellular localization in response to cryoinjury. Cultured breast cancer cells (MDA-MB-231 and MCF-7) were exposed to freezing to induce cryoinjury. RNA and protein extracts were then analyzed using reverse transcription-quantitative PCR and western blotting, respectively. Localization of aquaporins was studied using immunocytochemistry. Additionally, cells were transfected with small interfering RNA to silence aquaporin gene expression and cell viability was assessed using the Sulforhodamine B assay. Cryoinjury did not influence gene expression of AQPs, except for a 4-fold increase of AQP1 expression in MDA-MD-231 cells. There were no clear differences in AQP protein expression for either cell lines upon exposure to frozen and non-frozen temperatures, with the exception of fainter AQP5 bands for non-frozen MCF-7 cells. The exposure of cancer cells to freezing temperatures altered the localization of AQP1 and AQP3 proteins in both MCF-7 and MDA-MD-231 cells. The silencing of AQP1, AQP3 and AQP5 exacerbated MDA-MD-231 cell damage associated with freezing compared with control siRNA. This was also observed with AQP3 and AQP5 silencing in MCF-7 cells. Inhibition of aquaporins may potentially enhance cryoinjury. This cryosensitizing process may be used as an adjunct to breast cancer cryotherapy, especially in the border area targeted by cryoablation where freezing temperatures are not cold enough to induce cellular damage.

2.
Cytokine Growth Factor Rev ; 58: 16-29, 2021 04.
Article in English | MEDLINE | ID: covidwho-950779

ABSTRACT

Infection with the severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) results in diverse outcomes. The symptoms appear to be more severe in males older than 65 and people with underlying health conditions; approximately one in five individuals could be at risk worldwide. The virus's sequence was rapidly established days after the first cases were reported and identified an RNA virus from the Coronaviridae family closely related to a Betacoronavirus virus found in bats in China. SARS-CoV-2 is the seventh coronavirus known to infect humans, and with the severe acute respiratory syndrome (SARS) and the Middle East respiratory syndrome (MERS), the only ones to cause severe diseases. Lessons from these two previous outbreaks guided the identification of critical therapeutic targets such as the spike viral proteins promoting the virus's cellular entry through the angiotensin-converting enzyme 2 (ACE2) receptor expressed on the surface of multiple types of eukaryotic cells. Although several therapeutic agents are currently evaluated, none seems to provide a clear path for a cure. Also, various types of vaccines are developed in record time to address the urgency of efficient SARS-CoV-2 prevention. Currently, 58 vaccines are evaluated in clinical trials, including 11 in phase III, and 3 of them reported efficacy above 90 %. The results so far from the clinical trials suggest the availability of multiple effective vaccines within months.


Subject(s)
Antiviral Agents , COVID-19 Drug Treatment , COVID-19 Vaccines/therapeutic use , COVID-19/prevention & control , Molecular Targeted Therapy/methods , SARS-CoV-2/immunology , Angiotensin-Converting Enzyme 2/physiology , Antiviral Agents/isolation & purification , Antiviral Agents/therapeutic use , COVID-19/immunology , Drug Development/methods , Genome, Viral/physiology , Humans , SARS-CoV-2/drug effects , SARS-CoV-2/genetics , SARS-CoV-2/pathogenicity , Viral Vaccines/therapeutic use
SELECTION OF CITATIONS
SEARCH DETAIL